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Abstract

The interface crack problem of a bimaterial thermopiezoelectric solid was treated by applying the extended
version of Stroh|s formalism and singular integral equation approach[ The interface crack considered is
subjected to combined thermal\ mechanical and electric loads[ Under the applied loading\ the interface crack
is assumed to be partially opened[ Formulation of the problem results in a set of singular integral equations
which are solved numerically[ The study shows that the contact zone is extremely small in comparison with
the crack length[ Based on the formulation\ some physically meaningful quantities of interest such as stress
intensity factors and size of contact zone for a particular material group are analyzed[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

Keywords] Piezoelastic^ Interface^ Crack!tip^ Stress intensity^ Thermal stress

0[ Introduction

The crack problems with interfaces in dissimilar materials are of paramount importance for
many micromechanics models and numerical fracture mechanics[ Some analytical solutions were
worked out in the past decades[ Most of them indicated that they had oscillatory singularity
"Williams\ 0848^ England\ 0854^ Erdogan\ 0854#[ As was pointed out by England "0854#\ a
physically unreasonable aspect of the oscillatory singularities is that they lead to overlapping near
the ends of the crack[ To correct this unsatisfactory feature\ Comninou "0866# introduced a closed
crack tip model[ This idea was further addressed by several authors "Comninou and Schmueser\
0868^ Rice\ 0877^ Gautesen and Dundurs\ 0877^ Deng\ 0883# for isotropic elastic materials[
Extensions to anisotropic elasticity have been made by Wang and Choi "0872#\ Anderson "0877#
and Lee and Gao "0883#[ Previous studies revealed that the stress singularities exhibited an inverse
square!root and the size of contact zone was very small in comparison with the crack length in a
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tensile _eld[ As for piezoelectric materials\ much work has been done in dealing with crack and
dislocation problems[ Barnett and Lothe "0864# generalized Stroh|s six!dimensional framework to
an eight!dimensional framework that includes the line charge and the electric potential jump across
the slip plane in a piezoelectric solid[ Parton "0865# has considered the problem of a _nite crack
at the interface between two piezoelectric materials subjected to a far _eld uniform tension[
Do�kmeci "0879\ 0877# presented critical reviews of the work in the area of dynamics and fracture
of piezo crystals[ Pak "0881# investigated the electroelastic _elds and the energy release rate for a
_nite crack by way of the method of distributed dislocations and electric dipoles[ Fil|shtinskii and
Fil|shtinskii "0883# developed a Green function for a piecewise!uniform piezocomposite with a
crack between the phases[ Besides\ the following works should also be mentioned in this context
"Parton and Kudryavtsev\ 0877^ Mikhailov and Parton\ 0889^ Sosa\ 0881^ Qin and Mai\ 0886#[
However\ similar developments to interface cracks in dissimilar thermopiezoelectric materials have
not yet been made\ to our knowledge[ In this study\ we will report a general representation of
Comninou|s interface crack!tip _elds for linear thermopiezoelectric media without friction in the
contact zone[ The problem is _nally reduced to a set of singular integral equations which can be
solved with numerical methods[ Using the formulation developed\ some physically meaningful
quantities of interest such as stress intensity factors and size of contact zone for a particular
material group are analyzed[

1[ Basic equations and expressions

In this section\ the extended Stroh formalism "Barnett and Lothe\ 0864# used for plane pie!
zoelectric material is brie~y reviewed[ For a complete derivation and discussion the readers may
consult the reference cited above[ Consider a 1!D thermoelectroelastic solid\ where all _eld quan!
tities are functions of x0 and x1 only[ For convenience\ the shorthand notation introduced by
Barnett and Lothe "0864# is adopted in this paper[ In the stationary case when no free electric
charge\ body force and heat source exist\ the complete set of governing equations for uncoupled
thermoelectroelastic problems are "Mindlin\ 0863#

hi\i � 9

PiJ\i � 9 "0#

together with

hi � −kijT\j

PiJ � EiJKmuK\m−xiJT "1#

in which

PiJ � 6
sij i\ J � 0\ 1\ 2

Di J � 3^ i � 0\ 1\ 2

uJ � 6
uj J � 0\ 1\ 2

q J � 3
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xiJ � 6
gij i\ J � 0\ 1\ 2

`i J � 3^ i � 0\ 1\ 2
"2#

EiJKm �

F

G

j

J

G

f

Cijkm i\ J\ K\ m � 0\ 1\ 2

emij K � 3^ i\ J\ m � 0\ 1\ 2

eikm J � 3^ i\ K\ m � 0\ 1\ 2

−kim J � K � 3^ i\ m � 0\ 1\ 2

"3#

where T and hi are temperature change and the components of heat ~ux vector\ ui\ q\ sij and Di

are the components of mechanical displacement vector\ electric potential\ the components of stress
tensor and the components of electric displacement vector\ Cijkm\ eijk and kij are the elastic sti}ness\
the piezoelectric coe.cients\ and dielectric constants\ and kij\ gij and `i are the coe.cients of heat
conduction\ thermal!stress constants and pyroelectric constants\ respectively[ A general solution
to "0# can be expressed in terms of extended Stroh formalism as Barnett and Lothe "0864# and
Hwu "0881#

T � `?"zt#¦`?"zt#

u � Af"z#¦c`"zt#¦Af"z#¦c`"zt# "4#

with

A � ðA0 A1 A2 A3Ł

f"z# � diag ð f0"z0# f1"z1# f2"z2# f3"z3#Ł

zt � x0¦tx1

zi � x0¦pix1

in which {{Re|| stands for the real part of a complex number\ the prime "?# denotes di}erentiation
with the argument\ ` and f are arbitrary functions to be determined\ pi\ t\ A and c are constants
determined by

k11t
1¦"k01¦k10#t¦k00 � 9

ðQ¦"R¦RT#pi¦Tp1
i ŁAi � 9

ðQ¦"R¦RT#t¦Tt1Łc � x0¦tx1 "5#

in which superscript {{T|| denotes the transpose\ xi are 3×0 vectors\ and Q\ R and T are 3×3
matrices de_ned by

xi � "gi0 gi1 gi2 `i#T\

"Q#IK � E0IK0\ "R#IK � E0IK1\ "T#IK � E1IK1 "6#
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The heat ~ux vector h and the stressÐelectric displacement "SED# P obtained from "1# can be
written as

hi � −"ki0¦tki1#`ý"zt#−"ki0¦t¹ki1#`ý"zt#\

P0J � −fJ\1\ P1J � fJ\0 "7#

where f is the SED function given as

f � Bf"z#¦d`"zt#¦Bf"z#¦d`"zt# "8#

with

B � RTA¦TAP � −"QA¦RAP#P−0

P � diag ðp0 p1 p2 p3Ł

d � "RT¦tT#c−x1 � −"Q¦tR#c:t¦x0:t[ "09#

Further\ one particular importance in the following discussion is the complex matrix AB−0[ It
is shown by Ting "0875# that the matrix can be expressed by

AB−0 � S−iL−0 "00#

where S and L are real matrices[ The matrix L is symmetric and positive de_nite and the matrix S

is anti!symmetric[ As a consequence\ the bimaterial matrix M can be given as "Ting\ 0875#

M � A0B
−0
0 −A1B

−0
1 � −"W¦iD# "01#

where subscripts {{0|| and {{1|| stand for quantities associated with upper material and lower
material\ respectively\ and where

W � S1−S0\ D � L−0
0 ¦L−0

1 [ "02#

Since S0\ S1 are anti!symmetric and L0\ L1 are symmetric\ the matrix W is anti!symmetric and the
matrix D is symmetric[ The inverse matrix of M denoted by N can be expressed as

N � W	 ¦iD	 "03#

where W	 is anti!symmetric and D	 is symmetric[

2[ Piezoelectric bimaterials with closed crack tips

Consider a crack of length 1L lying in the interface of dissimilar anisotropic piezoelectric media[
Let the crack faces be partially closed with frictionless contact in the intervals "−L\ −a# and "b\ L#
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Fig[ 0[ Coordinates and geometry of a partially closed interface crack[

and opened in the interval "−a\ b# "see Fig[ 0#[ We assume that the media is subjected to far _eld
mechanical and electrical loads\ say T�[ The surface of the crack is traction! and charge!free[ For
the present problem\ it su.ces to consider the associated problem in which the crack surface is
subjected to the conditions

h"0#
1 "x0# � h"1#

1 "x0# � −h� "=x0 = ³ L#

bK"x0# � uK"x0\ 9¦#−uK"x0\ 9−# "=x0 = ³ L^ K � 1#

b1"x0# � u1"x0\ 9¦#−u1"x0\ 9−# "−a ³ x0 ³ b#

P"0#
1I "x0# � P"1#

1I "x0# � −T�
I "=x0 = ³ L^ I � 1#

P"0#
11 "x0# � P"1#

11 "x0# � −T�
1 "−a ³ x0 ³ b# "04#

and the continuous conditions on the interface excluding the region ð−L\ LŁ]

T0 � T1\ h"0#
1 � h"1#

1 \ u"0# � u"1#\ P"0#
1 � P"1#

1 "05#

The equality of traction and surface charge continuity comes from the relation t � 1f:1s where t

is the surface traction and charge on a curve boundary and s is the arc!length measured along the
curve boundary[ When the points along the crack surfaces are considered\ integration of t"0# � t"1#

provides f"0# � f"1# since the integration constants can be neglected\ which correspond to rigid
motion[ Thus we have

T0 � T1\ h"0#
1 � h"1#

1 \ u"0# � u"1#\ f"0# � f"1#[ "06#

Using eqn "7#0\ the continuity condition "06#1 leads to

−ik0`ý0"x¦
0 #−ik1`ý1"x−

0 # � ik1`ý1"x−
0 #−ik0`ý0"x¦

0 # "07#

where x2
0 denote the points on the upper and lower surfaces of the interface\ respectively\and

k � k11"t−t¹#:1i[ Noting that the important properties of holomorphic functions used in the
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method of analytical continuation is that if `"z# is holomorphic in the region x1 × 9 "or x1 ³ 9#\
then `"z¹# is holomorphic in the region x1 ³ 9 "or x1 × 9#[ From this property and eqn "07#\ de_ne

v"z# � 6
−ik0`ý0"z#−ik1`ý1"z# z $ material 0

−ik1`ý1"z#−ik0`ý0"z# z $ material 1
"08#

where the function v"z# is analytic in the whole plane[ Thus\ from Liouville|s theorem\ we have
v"z# � 9 in our problem[ Further if the temperature _eld tends to zero when =z= : �\ and the
terms corresponding to the rigid body motion are neglected\ we have

`0"z# � −k1`1"z#:k0\ z $ material 1

`1"z# � −k0`0"z#:k1\ z $ material 0 "19#

Similarly\ from eqns "8# and "06#3\ one can obtain

f0"z# � BÞ−0
0 $B1f1"z#¦0d1¦

k1

k0

d01 `1"z#% \ z $ material 1

f1"z# � BÞ−0
1 $B0f0"z#¦0d0¦

k0

k1

d11 `0"z#% \ z $ material 0 "10#

Using the results of "19# and "10#\ the continuity conditions "06#0\2 can be rewritten as

u¦ � u−\ c¦ � c− x0 ( ð−L\ LŁ "11#

where superscripts {{¦|| and {{−|| indicate the limit values of the corresponding functions as x1 :
9¦ and x1 : 9−\ respectively\ and

u"z# � 6
"0¦k0:k1#`0"z# z $ material 0

"0¦k1:k0#`1"z# z $ material 1
"12#

c �

F

G

j

J

G

f

MB0f0"z#¦
0

k0¦k1

"c�−AÞ1B
−0
1 d�#u"z# z $ material 0

−MÞ B1f1"z#¦
0

k0¦k1

"c¹�−AÞ0BÞ
−0
0 d¹�#u"z# z $ material 1

"13#

with

c� � c0k1¦c¹1k0\ d� � d0k1¦d¹1k0 "14#

The above de_nitions are quite similar to those of Hwu "0881#\ except some multipliers which
make our derivations easier[

Using the results of eqns "19#\ "10#\ "13# and "14#\ the boundary conditions "04#0\3\4 can be
expressed as
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"uý#¦¦"uý#− �
−i"k0¦k1#

k0k1

h�

NF¦−NÞF¦ � −T�¦F90"x¦
0 #¦F91"x−

0 # "15#

for a full open interface crack model\ where

F � c?\

F90"x¦
0 # �

0
k0¦k1

ðN"c�−A1B
−0
1 d�#−k1d0Łu"x¦

0 #

F91"x−
0 # � −

0
k0¦k1

ðNÞ "c¹�−A0B
−0
0 d¹�#−k0d1Łu"x−

0 # "16#

The solution to "15#0 has been discussed elsewhere "see Hwu\ 0881\ for example#[ For conciseness
we omit those details here[

It should be pointed out that the physical meaning of F is quite obvious and can be seen by
noting that the dislocation density vector b de_ned by

b �
1

1x0

"u¦−u−# "17#

and checking eqns "13# and "16#0\ with which we have

b �"F¦−F−# "18#

The PlemeljÐSokhotskii formulae for Cauchy integral yields

F"z# �
0

1ip g
L

−L

b

x0−z
dx0 "29#

Introducing the following symbols

N� � &
N00 N02 N03

N20 N22 N23

N30 N32 N33
' \ F� � 8

F0

F2

F3
9 \ T� � 8

−T�
0 ¦"F90#0¦"F91#0

−T�
2 ¦"F90#2¦"F91#2

−T�
3 ¦"F90#3¦"F91#3

9 \
T1� � −T�

1 ¦"F90#1¦"F91#1\ W9 � "W	 10 W	 12 W	 13#\ D9 � "D	10 D	12 D	13#

f� � −WT
9 "F¦

1 −F−
1 #−iDT

9 "F¦
1 ¦F−

1 #\

f1� � W9"F�
¦−F�

−#−iD9"F�
¦¦F�

−# "20#

and using eqn "15#\ the boundary conditions "04#3\4 can be written as

N�F�
¦−NÞ�F�

− � T�¦f� "=x0 = ³ L# "21#

N11F¦
1 −NÞ11F−

1 � T1�¦f1� "−a ³ x0 ³ b# "22#

Equation "21# is a generalized Hilbert problem if F1 is a known function[ The Hilbert problem
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can be solved by way of the technique of Clements "0860#[ In doing this\ multiplying "21# by Yi

and summing over i results in

YiN�ij"F�j#¦−YiNÞ�ij"F�j#− � Yi"T�i¦f�i# "=x0 = ³ L# "23#

The Yi are chosen such that

YiN�ij � Vj\ YiNÞ�ij � lVj "24#

Eliminating Vj from "24#\ one has

"NÞ�−lN�#Y � 9 "25#

For a non!trivial solution it is necessary that

>"NÞ�−lN�#> � 9 "26#

Let lg "g � 0\ 1\ 2# denote the roots of eqn "26# and the corresponding values of Yi and Vi be
expressed by Ygi and Vgi[ Equation "23# may then be recast as

"Ygi"F�i#¦"x0##−lg"Ygi"F�i#−"x0## � Ygi"T�i"x0#¦f�i"x0## "=x0 = ³ L# "27#

Equation "27# is a standard Hilbert problem and its solution may be given by

F�i"z# � s
2

k�0

"V−0#ik $
Xk"z#
1pi g

L

−L

YkjT�j"x#

X¦
k "x#"x−z#

dx¦
Xk"z#
1pi g

b

a

Ykjf�j"x#

X¦
k "x#"x−z#

dx% "28#

where

Xk"z# � "z−L#dk−0"z¦L#−dk

dk �
0

1pi
ln lk "39#

In eqn "28# the branches of Xk"z# are chosen such that zXk"z# : 0 as =z= : �\ and the argument
of lk is selected to lie between 9 and 1p[ Substitution of "28# into "22# leads to

A"x#b1"x#¦
0
p g

b

−a

B"x\ t#
t−x

b1"t# dt¦
0
p g

b

−a

C"x\ t#
"t−x# $

0
p g

b

−a

b1"t#
t−t

dt% dt � F"x# "30#

where A"x#\ B"x\ t#\ C"x\ t# and F"x# are known functions given in Appendix I[ In addition\ the
solution to "30# should satisfy the separation condition and the condition of unilateral constraint
which requires that

u"0#
1 "x0\ 9#−u"1#

1 "x0\ 9# − 9 "for −a ¾ x0 ¾ b#

s11"x0\ 9# ¾ 9 "for −L ³ x0 ¾ −a\ b ¾ x0 ³ L# "31#
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For convenience\ normalizing the interval "−a\ b# by the change of variables^

t �
b−a

1
¦

b¦a
1

s\ x �
b−a

1
¦

b¦a
1

s9\

t �
b−a

1
¦

b¦a
1

st "32#

If we retain the same symbols for the new functions\ eqn "30# can be rewritten as

A"s9#b1"s9#¦
0
p g

0

−0

B"s9\ s#
s−s9

b1"s# ds¦
0
p g

0

−0

C"s9\ st#
"st−s9# $

0
p g

0

−0

b1"s#
s−st

ds% dst � F"s9# "33#

In addition to eqn "33#\ the single valuedness of elastic displacements and electric potential around
a closed contour surrounding the whole crack requires that

g
0

−0

b1"s# ds � 9 "34#

In order to solve the singular integral equations "33# and "34#\ the numerical method developed
by Erdogan and Gupta "0861# is adopted[ Let

b1"s# �
U"s#

z0−s1
¼

s
n

k�0

BkTk"s#

z0−s1
"35#

where U"t# is a regular function de_ned in a closed interval =s= ¾ 0\ Bk are the real unknown
coe.cients\ and Tk"t# the Chebyshev polynomials of the _rst kind[ Then for −L ³ x ³ a and
b ³ x ³ L\

s11 � A"s9#b1"s9#¦
0
p g

0

−0

B"s9\ s#
s−s9

b1"s# ds¦
0
p g

0

−0

C"s9\ st#
"st−s9# $

0
p g

0

−0

b1"s#
s−st

ds% dst−F"s9# "36#

Since the contact is smooth\ s11 should be equal to zero at s9 � 20\ i[e[ s11 � 9\ which provides
two conditions for determining the unknowns\ a and b[ The discretized form of "33# and "34# may
be written as "Erdogen and Gupta\ 0861#]

A"s9r#U"s9r#¦ s
n

k�0

0
n $

B"s9r\ sk#
"sk−s9r#

¦
0
m

s
m

j�0

C"s9r\ stj#"0−s1
tj#0:1

"stj−s9r#"sk−stj# %U"sk# � F"s9r#

s
n

k�0

U"sk# � 9 "37#

where
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sk � cos $
"1k−0#p

1n % \ "k � 0\ 1\ [ [ [ \ n#

s9r � cos"rp:n#\ "r � 0\ 1\ [ [ [ \ n−0#

stj � cos $
"1j−0#p

1m % " j � 0\ 1\ [ [ [ \ m\ m � n#

Equation "37# provides a system of n linear algebraic equations to determine U"sk#\ and then
Bk[ Once the function U"s# has been found\ the corresponding SED\ P1 can be given from "7# in
the form

P1 � W	 b¦
D	

p g
0

−0

b"s# ds
s−x

¦T�−F90−F91 "38#

where P1 � "s10 s11 s12 D1#T[ With the usual de_nition\ the stress intensity factors are given
by

K � lim
x0:2L

z1p"x0 3 L#P1 � lim
x0:2L

z1p"x0 3 L# $W	 b¦
D	

p g
0

−0

b"s# ds
s−x

¦T�−F90−F91%
"49#

where K � "KII\ KI\ KIII\ KD#T[ The energy release rate can be evaluated by considering the relative
displacements DU\ which are obtained from the de_nition of c "13# as

Dui � s
2

k�0

"V−0#ik6Ykj gT�j"s# ds¦N�kzL1−x1 s
n

m�0

Bm

m
Um−0"x:L#

−N�k� $ s
n

m�0

Bm

m¦0
Tm¦0"x:L#− s

m�0\2\4

Bm

m¦0%7 "40#

where Uj"x# is the Chebyshev polynomials of the second kind[ By applying the virtual work of
crack closure method "Irwin\ 0846#\ the total energy release rate G can then be calculated as

G � lim
DL:9

0
1DL g

DL

9

DuT"x−DL#P1"x# dx "41#

3[ Numerical examples

As an illustration of the proposed formulation a simple interface crack problem has been
considered "see Fig[ 0#[ The upper and lower materials are assumed to be BaTiO2 "Dunn\ 0882#
and Cadmium Selenide "0883#\ respectively[ The material constants for the two materials are given
in Appendix II[

In our analysis\ to be consistent with the notations of Dunn "0882#\ the plane strain deformation
is assumed and the crack line is assumed to be in the x0Ðx2 plane\ i[e[\ D1 � u1 � 9[ Therefore the
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Fig[ 1[ Stress intensity factors vs parameter a[

stress intensity factor vector K� now has only three components "KIII\ KI\ KD#[ In the course of
calculation\ values of a and b are assumed _rst\ and then computing the n!values of U"sk# from
eqn "37#[ Once U"sk# are determined s22 at s9 � 20 can be calculated\ and the secant method was
applied to predict new values of a and b[ This iterative procedure was repeated until determined
s22 at s9 � 20 vanishes[ Figures 1Ð3 show the numerical results for the coe.cients of stress
intensity factors bI "i � 0\ 1\ D# vs a\ where a and bi are de_ned by

a � h9Lg22:k0s
�
02 "42#

KIII "L# � s�
02 zpLb1"a#

KI "L# � s�
02zpLb0"a#

KD"L# � s�
02zpLbD"a# "43#

Figure 1 shows that the heat ~ux h9 has very little e}ect on KI in the closed crack!tip model[
However\ Figs 2 and 3 show that the intensity factors KIII and KD will increase along with the
increase of parameter a in some extent[ All of these results are compared with those from the fully
open model\ which will be given in Appendix III[ It can be seen from Figs 2 and 3 that there is some
discrepancy between the two models\ but the discrepancy will gradually abate as the parameter a

increases[ It should be pointed out that the characteristics of stresses at the crack tip are very
di}erent between the fully open model and the closed crack!tip model[ Particularly\ in the fully
open model\ the stress s22 becomes unbounded as the point tends to the crack tip\ whereas in the
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Fig[ 2[ Stress intensity factors vs parameter a[

Fig[ 3[ Stress intensity factors vs parameter a[
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Fig[ 4[ The right!hand contact zone vs a[

close crack!tip model\ the normal stress s22 is _nite[ Due to this di}erent singular nature\ the
corresponding results for stress intensity factor KI should be di}erent\ but the results for KIII and
KD should be similar[ That is the reason for the large di}erences between the two models shown
in Fig[ 1[ Further\ the numerical results reveal that the left contact zone "0−a:L#\ is of order 09−5

when a � 9[ We also found that a:L was insensitive to changes of parameter a[ For simplicity\ the
left contact zone was set to be 9[5×09−4[ Figure 4 shows the variation of the right!hand contact
zone "0−b:L# with parameter a[ It can be seen that the length of the contact zone decreases with
increasing a[ When the shear stress s�

02 is dominant\ the contact length of the crack surface becomes
signi_cant[ Therefore\ we can conclude that when the remote heat ~ux in the x1 direction is
dominant\ the contact zone is relatively small and then both models can predict meaningful results[
Otherwise\ when the shear stress s�

02 is dominant\ the contact length becomes signi_cant[ In this
case the closed crack!tip model should be used to obtain correct results[

4[ Conclusions

The extended Stroh formalism and the method of singular integral equation are used to establish
a closed crack tip model of an interface crack between two thermopiezoelectric materials[ The
problem is _rst reduced to a Hilbert problem and then transformed into a singular integral
equation[ The equation can be solved numerically[ The numerical results show that heat ~ux h9

has a small e}ect on KI for the closed crack tip model\ but some considerable e}ects on the other
two concentration factors\ i[e[ KIII and KD[ It also can be seen from Figs 2 and 3 that there is some
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discrepancy between the two models\ but the discrepancy decreases with a[ Moreover\ the numerical
results reveal that the left contact zone "0−a:L#\ is of order 09−5 when a � 9 and is insensitive to
changes of parameter a[ From the results reported in Fig[ 4\ we can conclude that when the remote
heat ~ux in the x1 direction is dominant\ the contact zone is relatively small and then both models
can predict meaningful results^ otherwise\ when the shear stress s�

02 is dominant\ the contact length
becomes signi_cant[ In this case the closed crack!tip model should be used[

Appendix I] The expressions for A"x#\ B"x\ t#\ C"x\ t# and F"x#

A"x# � s
i�0\2\3

s
2

k�0

"V−0#ikN�kW	 1i "A0#

B"x\ t# � D	11¦ s
i�0\2\3

s
2

k�0

"V−0#ikN�k�W	 1i− s
i�0\2\3

s
2

k�0

Xk"x#

X¦
k "t#

"V−0#ikN�kD	1i "A1#

C"x\ t# � − s
i�0\2\3

s
2

k�0

"V−0#ikXk"x#N�k�D	1i:X
¦
k "t# "A2#

F"x# � T1�"x#¦ s
i�0\2\3

s
2

k�0

"V−0#ikYkj 6T�jW	 1i−
0
p

Xk"x#D	1ig
L

−L

T�j"t# dt

X¦
k "t#"t−x#7 "A3#

where

N�k � Yk0W	 10¦Yk1W	 12¦Yk2W	 13 "A4#

N�k� � Yk0D	10¦Yk1D	12¦Yk2D	13 "A5#

Appendix II] The material constants used in Section 3

"0# Material properties for BaTiO2 "Dunn\ 0882#

C0000 � 049 GPa\ C0011 � 55 GPa\ C0022 � 55 GPa\ C2222 � 035 GPa\ C1212 � 33 GPa\

a00 � 7[42×09−5:K\ a22 � 0[88×09−5:K\ l2 � 9[022×094 N:CK\

e200 � −3[24 C:m1\ e222 � 06[4 C:m1\ e002 � 00[3 C:m1\ k00 � 0004k9\

k22 � 0159 k9\ k9 � 7[74×09−01 C1:Nm1

"1# Material properties for Cadmium Selenide "Ashida et al[\ 0883#

C0000 � 63[0 GPa\ C0011 � 34[1 GPa\ C0022 � 28[2 GPa\

C2222 � 72[5 GPa\ C1212 � 02[1 GPa\

g00 � 9[510×095 NK−0 m−1\ g22 � 9[440×095 NK−0 m−1\ `2 � −9[183 CK−0 m−1\

e200 � −9[059 Cm−1\ e222 � 9[236 Cm−1\ e002 � 9[027 Cm−1\
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k00 � 71[5×09−01 C1:Nm1\ k22 � 89[2×09−01 C1:Nm1

where aii and li are thermal expansion constants and pyroelectric constants[
Since the values of the coe.cient of heat conduction both for BaTiO2 and Cadmium Selenide

could not be found in the literature\ the value k"0#
22 :k"0#

00 � 0[4\ k"1#
22 :k"1#

00 � 1\ and k"0#
02 � k"1#

02 � 9 are
assumed[

Appendix III] The fully open crack model

Consider again the crack system shown in Fig[ 0 except that we assume the crack is now fully
open[ In this case eqns "05#Ð"16# still hold[ Obviously eqn "15#0 is a Hilbert problem for a single
function\ and its solution has been shown in Muskhelishvili "0843# as

uý"z# � −
k0¦k1

1pk0k1

x9"z# g
L

−L

h� ds

x¦
9 "s#"s−z#

¦x9"z#p0"z# "A6#

where p0 "z# is a linear function of z\ and x9"z# is the basic Plemelj function\ i[e[\ x9"z# �"z1−L1#−0:1[
Having obtained the function u\ the terms in the right!hand side of equation "15#1 are all known[
Therefore\ it is a Hilbert problem in vector form\ and its solution procedure has been discussed in
detail elsewhere "see Clements\ 0860^ Qin and Yu\ 0886^ for example#[ Following the technique of
Clements "0860#\ the solution to eqn "15#1 can be expressed as

F"z# �
X9"z#
1pi g

L

−L

0
s−z

ðX¦
9 "s#Ł−0 ð−T�¦F90"x¦#¦F91"x−#Ł ds¦X9"z#p0"z# "A7#

where p0"z# is a vector of linear function\ and X9"z# a matrix of the basic Plemelj function de_ned
as

X9"z# � LG"z#\ L � diag ðl0 l1 l2 l3Ł\ G"z# � ð"z¦L#−"0¦dk# "z−L#dkŁ "A8#

where the angular ð Ł stands for the diagonal matrix\ i[e[\ ðAkŁ � diag ðA0 A1 A2 A3Ł\ dk and
lk of "A8# are the eigenvalues and eigenvectors of

"MÞ ¦e1pdM#l � 9 "A09#

The explicit solution of "A09# has been obtained by Suo et al[ "0881# as

d0\1 � 0:12io\ d2\3 � −0:12k "A00#

where

o �
0
p

tanh−0 ð"b1−c#0:1−bŁ0:1\ k �
0
p

tan−0 ð"b1−c#0:1¦bŁ0:1 "A01#

with

b � 0
3
tr ð"D−0W#1Ł\ c � =D−0W= "A02#

here tr stands for the trace of the matrix\ and = = the determinant of the matrix[
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